Test report

Emission measurement on one (1) passenger cars of M1 type diesel, Euro 5 – with two (2) type of diesel fuel (MK1 and MK3)

A report for the Swedish Transport Administration

2012-04-15 Report no. 127058

Content

Proj	ect information (in Swedish)	4
Abb	reviations, acronyms and glossary	5
1.	The assigment	6
So	cope of work	6
Τe	est sites	6
Dy	ynomometer settings	7
	uel used	
Ту	/pe approval values	7
Ve	ehicle	8
	n-regulated emissions	
Dı	riving Cycles	9
	2*UDC	9
	Artemis	10
	Test sequence	11
2.	Results	12
CI	H ₄	13
	0	
C	O ₂	15
Fι	uel consumption	16
	O _X	
Pa	article mass (PM)	18
Pa	article number (PN)	19
Uı	n-regulated results – PAH	20
Uı	n-regulated results – Alkenes and alkanes	22
Co	onclusions	24
3.	Driving cycles (graphs)	25
Ar	temis	25
U	DC	26
4.	Fuel specifications	27
5.	References	29
6.	Appendix 1 – result table regulated emission	30
7.	Appendix 2 – test protocols regulated emission	31
8.	Appendix 3 – unregulated emissions	33

9.	Appendix 4 –	photos from the tests in Essen	. 34
----	--------------	--------------------------------	------

ABSTRACT

In this study tests on chassis dynamometer with two types of fuels have been carried out on a Euro 5 diesel passenger car. The objective of the work was to investigate if there is any difference in emission levels by using Swedish MK1 diesel or MK3 (EN 590 – 2009) diesel. All tests were carried out during March 2012 at TUV NORD's emission laboratory in Essen, Germany. Beside regulated emissions also several unregulated components were measured in this study.

The main conclusions of these tests are:

- For regulated emissions there are no significant differences in emissions between MK1 and MK3
- At cold ambient temperatures the emission of CO and HC show higher values for MK3 compared with MK1 (but the differences are small)
- The emission of CO₂ (is about 1.3 % higher for MK3 compared with MK1. This is however fully explained by comparing the carbon content per MJ. MK3 has about 1.5 % higher carbon content per MJ than MK1.
- The fuel consumption is about 1.0 % lower per km for MK3 compared with MK1. This is explained by comparing the energy content per liter (the difference is about 2 %)
- The conclusion based on these tests are that it is not any significant differences in PAH emissions from MK1 and MK3. It is not possible to compare these results with older tests based on older test vehicles (without DPF etc).

In parallel to this study (within this program) a literature study has also been carried out (Ecotraffic report 127059). The main objective was to find studies including both MK1 and MK3. Off road, heavy duty and light duty vehicles were included in this study.

Project information (in Swedish)

Beställare	Trafikverket	Beställningsnummer	TRV2011/48682 A	
Beställningsdatum	2011-11-16	Slutdatum enligt	2012-04-15 (reglerad)	
		beställning	2012-05-15 (oreglerat)	
Ansvarig hos beställare	Magnus Lindgren	Projektnummer	7058	
Ansvarig hos Ecotraffic	Lars Eriksson	Rapportering	Testrapport (engelska)	
Avvikelser		Provningsplats	TUV NORD - Essen	
Rapport språkgranskad		Rapport godkänd av	Börje Gevert	
Rapportnummer 127058		Rapporteringsdatum	2012-04-15	
Författare Lars Eriksson, Peter Ahlvik, Felix Köhler (TUV NORD)				

Abbreviations, acronyms and glossary

CVS Constant Volume Sampler/Sampling, a dilution device used for dilution of engine/vehicle exhaust for emission measurements.

- CH4 Methane
- CO Carbon monoxide
- CO2 Carbon dioxide
- DOC Diesel Oxidation Catalyst
- EGR Exhaust Gas Recirculation
- FAME Fatty Acid Methyl Esters
- FC Fuel Consumption
- NEDC New European Driving Cycle
- NOX Nitrogen oxides (NO + NO2)
- NO Nitrogen oxide
- NO2 Nitrogen dioxide
- PM Particulate Matter
- PMP Particulate Measurement Programme (the EU programme for developing new measurement methods for particle mass and number)
- PN Particle number
- RME Rasped Methyl Ester
- MK1 Swedish Environmental Class 1 Diesel
- MK3 European diesel (EN590)
- PAH Poly Aromatic Hydrocarbons
- DPF Diesel Particle Filter

1. The assigment

Scope of work

Ecotraffic shall on behalf of Trafikverket carry out emission tests on one diesel fuelled passenger car of M1 type, Euro 5 by using two types of fuels, MK1 and MK3 (EN590 2009). Both regulated and unregulated components shall be measured.

Result shall be reported as modal results for exhaust components NMHC, CH_4 , CO_2 , BF, NO_X , NO_2 and PN.

Used driving cycles shall be:

- 2*UDC at + 22°C
- Artemis (hot)
- 2*UDC at 7°C

The study shall be reported as a technical test report and the modal results shall be reported is such formatting so they can be used for calculation of emission factors.

Test sites

All tests have been carried out at TUV NORD in Essen. All tests were performed during March 2012.

	Test Cell
Climatisation	-20°C - +35°C
	WEISS
Chassis Dynamometer	MAHA ECDM 48L 4x4
Control Unit	MAHA
CVS-Unit	MAHA-CVS
Analytical System for gaseous emissions (CO, CO ₂ , THC, NMHC, NO, NO _X)	MAHA-AMA D1
Particle Collector	MAHA-PTS
Particle Balance for particle mass	SARTORIUS SE2-F
Particle Counter	MAHA

Dynomometer settings

Identical values as in the type approval tests have been used

		Roller	Street
F0 N		61	115
F1 [N/(km/h)]		0,0517	0,370
F2 [N/(km/h) ²]		0,0312	0,031
Inertia	kg	1 590	1590

Fuel used

In this study, two fuels have been used, MK1 and EN 590. The fuel specifications are described in chapter 4.

Type approval values

Deterioration factors are included in the values below.

CO mg/km	THC mg/km	NMHC mg/km	NOX mg/km	THC+NOX mg/km	PM mg/km	PN #/km		
ing/kin	mg/km	mg/km	ing/kiii	mg/km	mg/km			
386,3			158,3	207,9	0,41	0,01*10 ¹¹		
CO2	CO2	CO2	FC	FC	FC			
Urban	Extra Urban	Combined	Urban	Extra Urban	Combined			
g/km	g/km	g/km	liter/ 100 km	liter/100 km	liter/100 km			
160	113	129	6,1	4,3	4,9			

Vehicle

One diesel cars of euro 5 class have been used in this study. The car was a Germany car (German registration plate).

Manufacture	Volkswagen, VW
Model	GOLF VI, (1K)
Chassi no	WVWZZZ1KZBP169860
Gear Box	MT5
Wheel/Tires	205/55 R16
Engine displacement	1,6I (CAYD)
Power	77 kW
Odometer	27 169 km
Emission class	EURO 5
Year model	2011
	DPF, (no additive used for
Type of exhaust gas	regeneration)
Technology	EGR
	DOC

Un-regulated emissions

PAH analysis was performed by the research group of Roger Westerholm at the department of Analytical Chemistry at Stockholm University. Extraction of the collected PUF and filter samples was conducted using pressurized fluid extraction on an ASE 200 accelerated solvent extraction system (Dionex Corporation, Sunnyvale, CA, USA). The filters were extracted using a method recently validated for PAH analysis with diesel particulate matter standard reference materials from the US National Institute of Standards and Technology (NIST) [Masala et al., 2011; Sadiktsis et al., 2012]. Extractions of five consecutive 30 min static extraction cycles were performed with a mixture of toluene and methanol (9:1; v/v) at elevated temperature and pressure (200 °C and 3000 psi). The PUF samples were extracted with acetone at 110 °C and 500 psi using two extraction cycles of 5 min. The extracts were evaporated to 0.5 ml and subjected to clean-up using silica solid phase extraction as described in detail elsewhere [Bergvall and Westerholm, 2006]. The analysis of PAHs was performed using a hyphenated High Performance Liquid Chromatography- Gas Chromatography/Mass Spectrometry (HPLC-GC/MS) system, previously described in detail [Christensen et al., 2005]. Detailed description on the method parameters used is available elsewhere [Sadiktsis et al., 2012]. [Ref 1 – 4]

<u>Aldeydes, ketones and alkenes</u> were analyzed by IVL in Göteborg. Samples were collected in adsorption pipes and in canisters. During analyzing of samples, air is pumped through an electrically cooled, sorbent packed, focusing trap. After sampling the trap is heated and the analyses are transported into a gas chromatograph (GC) with two separate column lines and two separate flame-ionisation detectors (FID). The analyze method is fully described in reference, Potter, A.(2005). Analysis Method for Ozone Precursor Volatile Organic Compounds, IVL Rapport U1121.

Driving Cycles

See also chapter 3 for more details.

2*UDC

In this study, the first part of European driving cycle (NEDC) is used. This part also known as UDC (Urban Driving Cycle) is a cycle that is commensurate with a typical run in a typical European town. The cycle consists of four identical parts with a total length of 13 minutes. Maximum speed is 50 km / h. The UDC was repeated 2 times, i.e. 8 repetitions, totaling 26 minutes. Before starting the vehicle should take the ambient temperature and the start will be preceded by 40 seconds idle

Artemis

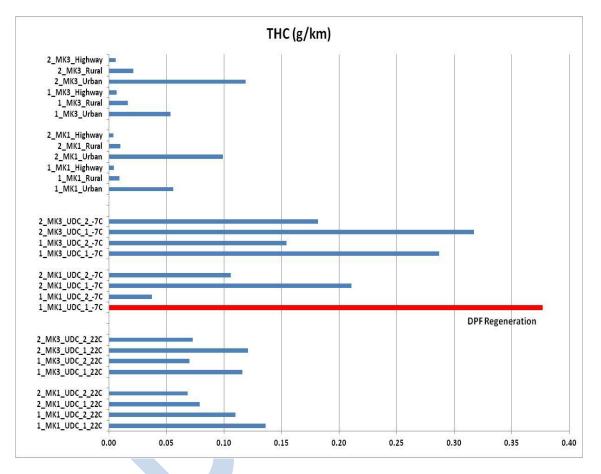
Artemis is a driving cycle that is supposed to be more reality-like than the NEDC. In these tests Artemis was started with a "warm engine". In practice this means that the catalyst has reached operating temperature already at the start. Compared to the UDC driving cycle - Artemis has higher load, faster acceleration and higher top speeds. The cycle consists of three parts, urban (about 15 minutes, 4.5 km), rural (about 18 min, 17 km) and highway (about 18 min, 29 km).

Ecotraffic

Test sequence

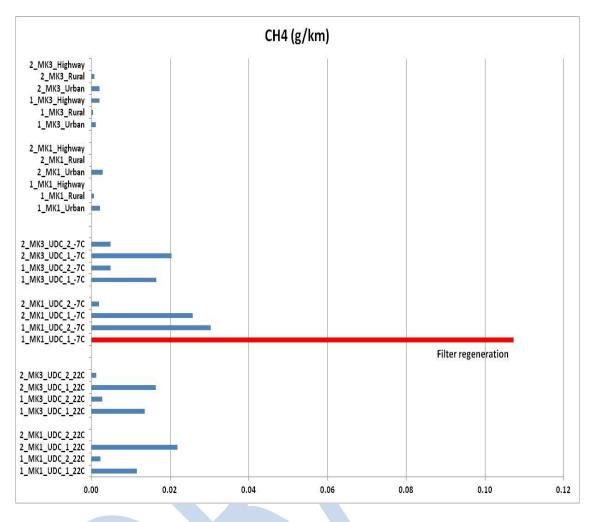
The tests were carried out in the order described in the table below. Marked with underline = also unregulated components. Rest is only regulated components.

Test no.	Driving Cycle		
	Fuel = MK1		
1	UDC + UDC	+ 22 C	
2	Artemis (hot start)*		
3	UDC + UDC	-7 C	
4	UDC + UDC	+ 22 C	
5	Artemis (hot start)*		
6	UDC + UDC	-7 C	
	Fuel = MK3 (also change oil	and filter)	
7	UDC + UDC	+ 22 C	
8	Artemis (hot start)*		
9	UDC + UDC	-7 C	
10	UDC + UDC	+ 22 C	
11	Artemis (hot start)*		
12	UDC + UDC	-7 C	
	No car – only air from dilution tunnel		
13	Zero / Blank test	Performed after MK1-tests (between no 6 and 7)	
<u>-</u>			

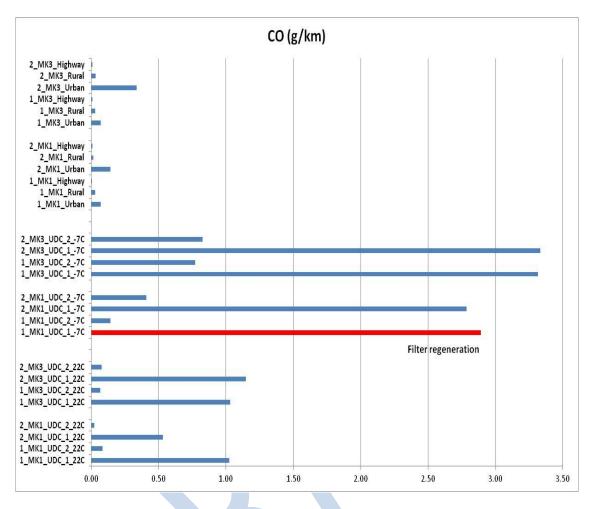

*Artemis: Un-regulated emissions were sampled from the urban part of the Artemis cycle. Regulated components were divided in all three parts, urban, rural and highway.

2. Results

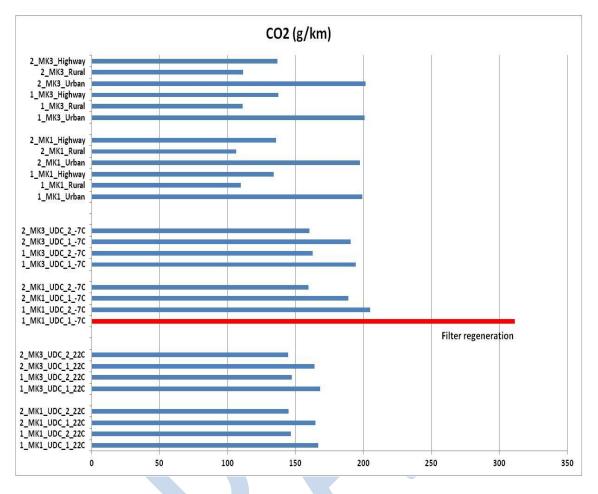
Below results from the measurements are showed and short comments are given. On the first test for MK1 at -7 C it was a regeneration of the diesel particle filter (DPF) during that cycle. *Marked with* 1_*MK1_UDC_1_-7*


This explains increase in exhaust emission in that driving cycle.

There are no significant differences in HC emissions by using MK1 or MK3 as fuel. At -7 it seems that the emissions are higher for MK3. However the difference showed is small and the absolute levels are low.

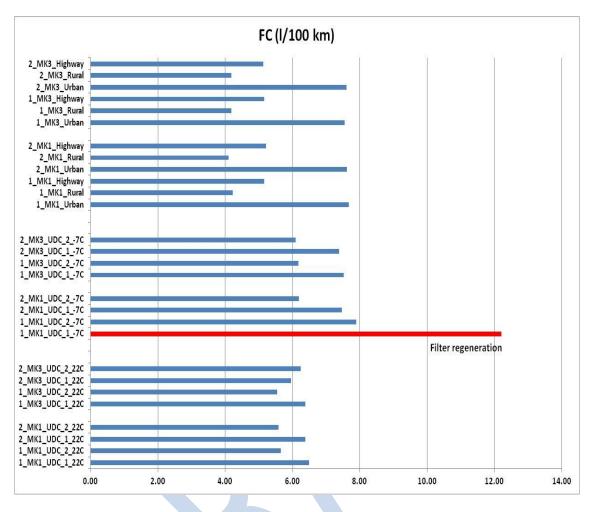

CH₄

The emissions of methane are low for both type of fuels and the levels are low (except for MK1 at -7 due to the filter regeneration). Methane is considered a relatively potent greenhouse gas, about 25 CO2 equivalents, but otherwise as a harmless component.


СО

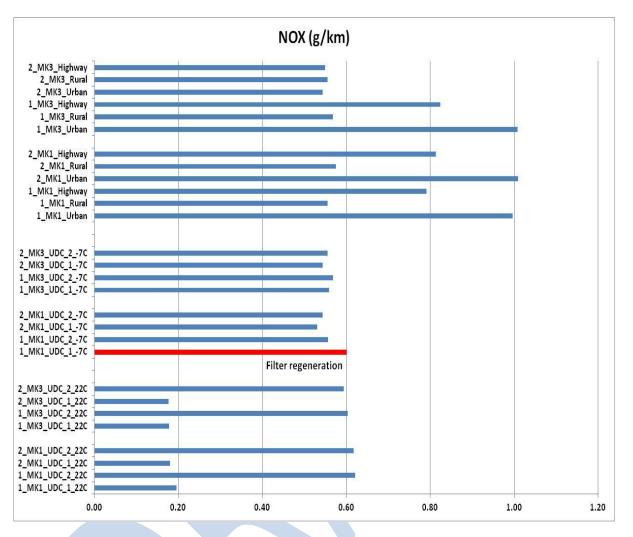
There are no significant differences in CO emissions by using MK1 or MK3 as fuel. At -7 it seems that the emissions are higher for EN 590. However the difference showed is small and the absolute levels are low. See also THC.

 CO_2

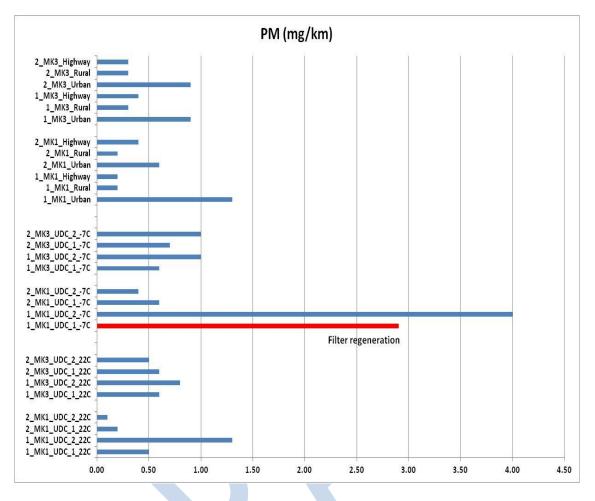


There are no differences in CO_2 -emissions between the two fuels that not may be explained by the differences in carbon content in the fuels. By study the values in detail the the emission of CO_2 is about 1.3 % higher for MK3 compared with MK1. This is however fully explained by comparing the carbon content per MJ. MK3 has about 1.5 % higher carbon content per MJ than MK1.

The relatively high emission for MK1 at -7 is due to filter regeneration.

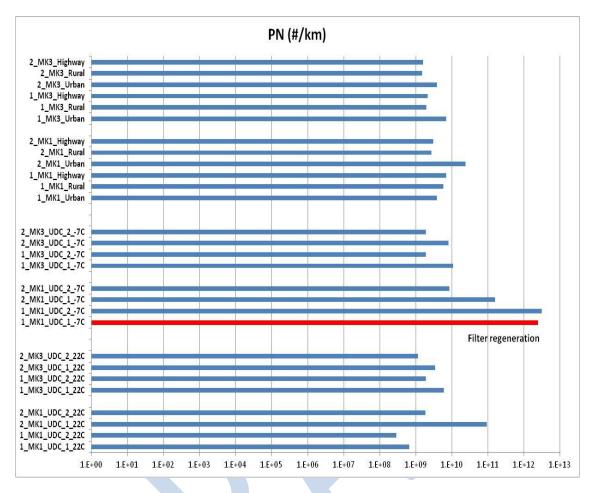

Fuel consumption

Fuel consumption can use the same reasoning as for CO_2 . The contribution of CO_2 in the calculation of fuel consumption is quite dominant. The fuel consumption is about 1.0 % lower per km for MK3 compared with MK1. This is explained by comparing the energy content per liter (the difference is about 2 %)


NO_X

There are no differences in NO_X -emission between the two fuels. The levels are relatively high except for the first UDC cycles. After the first UDC – NO_X values increases from about 0.18 g/km to 0.6 g/km. This is not fully understood but this is however an issue outside this study.

Particle mass (PM)

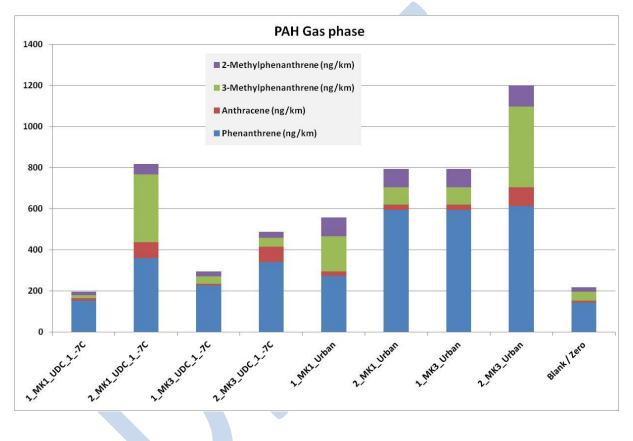


PM was measured by collecting particles on filter paper. These are very low weights (in absolute terms). This allows the measurement uncertainty is relatively large, so large that it is difficult to draw relevant conclusions from filter weight. A general conclusion is that there are very low PM emissions and that it is not any differences due to the use of fuel MK1 or MK3.

The relatively high emission for MK1 at -7 is due to filter regeneration. After the regeneration (1_MK1_UDC_2_-7) the particle mass emission increases. This phenomena due to that a clean filter has lower filtration capacity (a soot layer is necessary for full function) than a not regenerated filter.

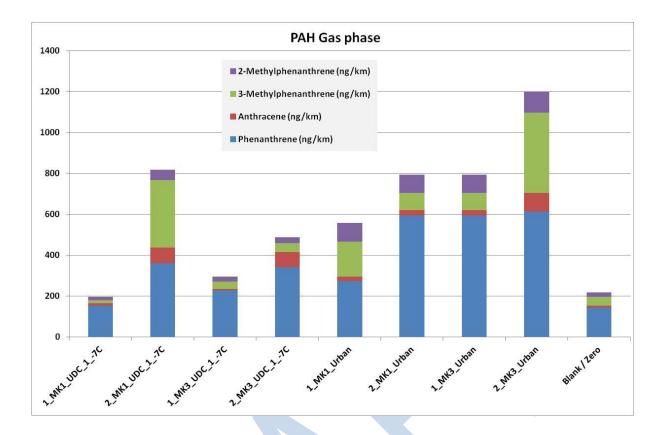
Particle number (PN)

Measurement of particles number according to the PMP is associated with many uncertainties. The vehicle is equipped with particulate filter (DPF). When this type of filter is running and has a layer of soot in it so is the filtration rate is very high. It is however possible to draw the conclusion that the emissions of particle number is very low and that the filter work well. To draw conclusions other than it is associated with considerable uncertainty.


The relatively high emission for MK1 at -7 is due to filter regeneration. See alos similar discussion as for the PM-emissions above.

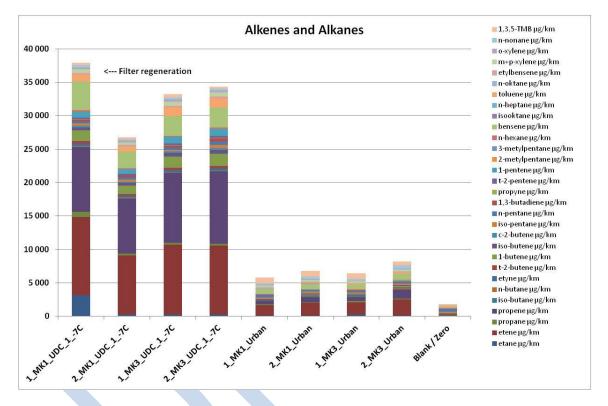
Un-regulated results – PAH

PAH emissions were measured as gas phase and particle phase emissions (condensate on particles). In appendix, all results are presented as result tables.


Below, results from gas phase are presented. In total, 18 PAH components were measured. 12 of these were close to or under detection limits for both MK1 and MK3. The values are low (nano grams) and it is not possible to find any significant differences between the two fuel used.

For PM phase, see figure on next page, the emission values are lower compared with the gas phase. This results due to the effective diesel particle filter used on the test vehicle.

The conclusion based on these tests are that it is not any significant differences in PAH emissions from MK1 or MK3. It is not possible to compare these results with older tests based on older test vehicles (without DPF etc).

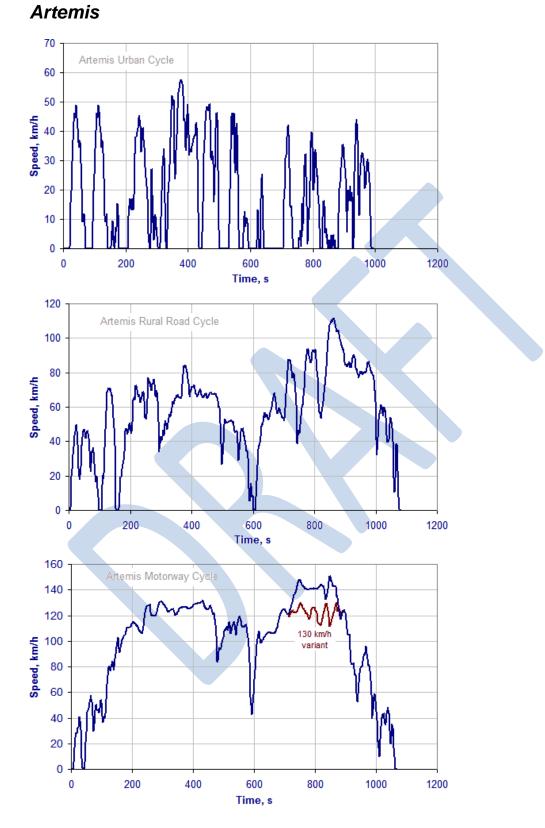


Un-regulated results – Alkenes and alkanes

After the catalytic converter has reach the light off temperature there are no differences between the two fuels, see results for Artemis driving cycle below. For start at low temperature it seems to be a small benefit for MK1. This difference may be explained by higher cold start emissions of propene, 1.3 butadiene, benzene and toluene for MK3 compared with MK1. However, it is low absolute values and the differences are not large.

In appendix, all results are presented as result tables.

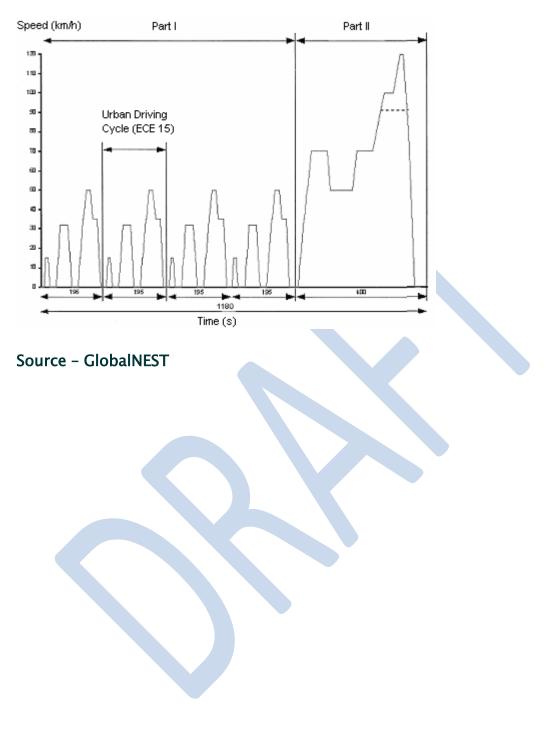
Un-regulated results – Aldehydes



Conclusions

By comparing emission from the two types of fuel we can draw these conclusions:

- For regulated emissions there are no significant differences in emissions between MK1 and MK3.
- At cold ambient temperatures the emission of CO and HC show higher values for MK3 compared with MK1 (but the differences are small)
- The emission of CO₂ (is about 1.3 % higher for MK3 compared with MK1. This is however fully explained by comparing the carbon content per MJ. MK3 has about 1.5 % higher carbon content per MJ than MK1.
- The fuel consumption is about 1.0 % lower per km for MK3 compared with MK1. This is explained by comparing the energy content per liter (the difference is about 2 %)
- The conclusion based on these tests are that it is not any significant differences in PAH emissions from MK1 and MK3. It is not possible to compare these results with older tests based on older test vehicles (without DPF etc).



3. Driving cycles (graphs)

Source – Dieselnet

UDC

4. Fuel specifications

Product Code: Diesel B7 Nomination number: FAT.111114.B7 Lineblend: DBB7 från OKQ8 Tank: Revised Issue:

PREEM AB Certificate of Quality

Vessel: Destination: Account: Delivery Date: Sample Number: 2011029238

SWEDISH AUTOMOTIVE GASOIL MK1

s according to ISO 4259

This product meets the quality requirements according to customer's nomination.

Work by: Dolores Martinez Chemist in Charge:

Telephone: +46 (0)10 450 41 85

Fax: +46 (0)10 450 41 86

For Preemraff Göteborg:

PREEM AB Certificate of Quality

Product Code:	SD-DIESEL EUR VI B7
Nomination number:	FAT.111114.B7
Lineblend:	
Tank:	DBB7 från OKQ8
Revised Issue:	Andrad från prov nr. 20110292

Vessel: Destination: Account: Delivery Date: 28 Sample Number: 2012007318

Diesel Euro VI B7

Properties	Results	Units	Ref. Test Methods
Appearance at 20°C	BRIGHT AND CLEAR		Visual inspection
Aromatic content	4,0	% V/V	EN 12916:2006
Ash content	< 0,010 *	% m/m	SS-EN ISO 6245:2003
Carbon content	85,0	% m/m	ASTM D 5291-10
Carbon Hydrogen Ratio	5,97		ASTM D 5291-10
Carbon Oxygen Ratio	115,10		ASTM D 5291-10
Carbon residue (on 10% dist res)	< 0,20 *	% m/m	SS-EN ISO 10370:1996
Cetane index	52,5	-	SS-EN ISO 4264:2007
Cetane number	56,0		SS-EN ISO 5165:1998
Cloud point	-30	°C	SS-EN 23015:1994
Cold Filter Plugging Point	-40	°C	SS-EN 116:1999
Colour	Undyed		Visual inspection
Copper content	< 1	mg/kg	ASTM D 6443:2010
Cu strip corrosion (3h at 50°C)	1A *		SS-EN ISO 2160:1998
Density at 15°C	819,5	kg/m3	SS-EN ISO 12185 T1:99
Dist: IBP	179,9	°C	SS-EN ISO 3405:2000
Dist: Temp. at 10% V/V rec.	208,6	°C	SS-EN ISO 3405:2000
Dist: Temp. at 50% V/V rec.	239,3	°C	SS-EN ISO 3405:2000
Dist: Temp. at 90% V/V rec.	295,2	°C	SS-EN ISO 3405:2000
Dist: Temp. at 95% V/V rec.	314,4	°C	SS-EN ISO 3405:2000
Dist:FBP	326,0	°C	SS-EN ISO 3405:2000
Dist:Residue	1,0	% V/V	SS-EN ISO 3405:2000
FAME content	6,9	% V/V	SS-EN 14078:2009
Flash point	67,5	°C	SS-EN ISO 2719:2003
Hydrogen content	14,3	% m/m	ASTM D 5291-10
Lubricity (WSD 1.4) at 60°C	188	μm	SS-EN ISO 12156-1:06
Net heat of combustion	42,75	MJ/kg	SS 15 51 38:1992
Oxidation stability	< 25	g/m3	SS-EN ISO 12205:1996
Oxidation stability at 110°C	> 20,0	hours	EN 15751:2009
Oxygen content	0,7	% m/m	ASTM D 5291-10
Polycyclic aromatic content	0,3	% m/m	EN 12916:2006
Strong acid number SAN	< 0,10	mg KOH/g	ASTM D 974-04
Sulphur content	< 3	mg/kg	SS-EN ISO 20846:2004
Total contamination	< 24 *	mg/kg	SS-EN 12662:2008
Water content	< 30	mg/kg	SS-EN ISO 12937:2001
Viscosity at 40°C	2,140	mm2/s	SS-EN ISO 3104/AC:99
Zinc content	< 1	mg/kg	ASTM D 6443:2010
* Värderna kommer från Prod Spe	c. Diesel D15RSE OKQ8	027/07 (MK1)	

Results according to ISO 4259

This product meets the quality requirements according to customer's nomination. Work by: Dolores Martinez Chemist in Charge:

Telephone: +46 (0)10 450 41 85

Fax: +46 (0)10 450 41 86

For Preemraff Göteborg: Dolores Martinez

5. References

- Bergvall C, Westerholm R (2006) Determination of dibenzopyrenes in standard reference materials (SRM) 1649a, 1650, and 2975 using ultrasonically assisted extraction and LC-GC-MS. Anal Bioanal Chem 384 (2):438-447.
- Christensen A, Östman C, Westerholm R (2005) Ultrasound-assisted extraction and on-line LC–GC–MS for determination of polycyclic aromatic hydrocarbons (PAH) in urban dust and diesel particulate matter. Anal Bioanal Chem 381 (6):1206-1216.
- Masala S, Ahmed T, Bergvall C, Westerholm R (2011) Improved efficiency of extraction of polycyclic aromatic hydrocarbons (PAHs) from the National Institute of Standards and Technology (NIST) Standard Reference Material Diesel Particulate Matter (SRM 2975) using accelerated solvent extraction. Anal Bioanal Chem 401:3305–3315.
- 4. Sadiktsis I, Bergvall C, Westerholm R (2012) Determination of 178-302 Da PAHs in the diesel particulate standard reference materials 1650b and 2975 using pressurized fluid extraction and online HPLC-GC-MS. In preparation. To be submitted to Anal Bioanal Chem.

6. Appendix 1 – result table regulated emission

Test	THC (g/km)	CO (g/km)	CO2 (g/km)	NOX (g/km)	FC (I/100 km)	PM (mg/km)	PN (#/km)
1_MK1_UDC_1_22C	0.1362	1.024		0.1947	6.497	0.5	6.54E+08
1_MK1_UDC_2_22C	0.1101	0.0832	146.45	0.6214		1.3	2.86E+08
2 MK1 UDC 1 22C	0.0788	0.5321	164.75	0.1805	6.381	0.2	9.31E+10
2 MK1 UDC 2 22C	0.0684	0.0224	144.91	0.6169	5.585	0.1	1.84E+09
						-	
1_MK3_UDC_1_22C	0.1161	1.0301	168.17	0.1775	6.385	0.6	5.93E+09
1_MK3_UDC_2_22C	0.0698	0.066	147.28	0.6031	5.539	0.8	1.89E+09
2_MK3_UDC_1_22C	0.1207	1.1468	164.02	0.176	5.962	0.6	3.37E+09
2_MK3_UDC_2_22C	0.073	0.0766	144.6	0.5943	6.237	0.5	1.16E+09
1_MK1_UDC_17C	0.3765	2.8889	310.97	0.5993	12.186	2.9	2.38E+12
1_MK1_UDC_27C	0.0374	0.1409	204.92	0.556	7.898	4	3.14E+12
2_MK1_UDC_17C	0.2109	2.7859	189.04	0.5302	7.468	0.6	1.59E+11
2_MK1_UDC_27C	0.1058	0.4084	159.71	0.5437	6.183	0.4	8.53E+09
1_MK3_UDC_17C	0.287	3.3166	194.31	0.5591	7.521	0.6	1.08E+10
1_MK3_UDC_27C	0.1543	0.7712	162.73	0.5677	6.17	1	1.87E+09
2_MK3_UDC_17C	0.3171	3.331	190.68	0.544	7.39	0.7	8.08E+09
2_MK3_UDC_27C	0.1819	0.8245	160.32	0.5553	6.086	1	1.89E+09
1_MK1_Urban	0.0558	0.0699	199.09	0.9965	7.676	1.3	3.89E+09
1_MK1_Rural	0.0089	0.0308	109.77	0.555	4.226	0.2	5.82E+09
1_MK1_Highway	0.0044	0.0067	133.86	0.7915	5.152	0.2	6.98E+09
2_MK1_Urban	0.0991	0.1407	197.51	1.0085	7.62	0.6	2.42E+10
2_MK1_Rural	0.0099	0.0169	106.42	0.575	4.097	0.2	2.70E+09
2_MK1_Highway	0.0038	0.0071	135.51	0.8138	5.215	0.4	3.05E+09
1_MK3_Urban	0.0534	0.0719	201	1.0075	7.553	0.9	6.91E+09
1_MK3_Rural	0.0164	0.0293	111.25	0.5685	4.178	0.3	1.97E+09
1_MK3_Highway	0.0066	0.0091	137.53	0.8233	5.162	0.4	2.16E+09
2_MK3_Urban	0.1189	0.3366	201.58	0.544	7.598	0.9	3.87E+09
2_MK3_Rural	0.0213	0.0337	111.44	0.5553	4.189	0.3	1.51E+09
2_MK3_Highway	0.006	0.0094	136.73	0.5497	5.132	0.3	1.59E+09

7. Appendix 2 – test protocols regulated emission

1. MK1 - 2*UDC (22 C)

MPAS Kurzpro TÜV - Essen	otokoll	EC	Œ	2012-03-	14 09:17	TUVN	ORD)	Testzelle TC#1
Testbegleitdaten	TC#1-2	0120314-1				•			
)12-03-14 09:17			Fahrkurve:		2_UDC Default Ha	nd 0		
Bediener: Ja	b			Schaltpunk	ttabelle:		• •		
Fahrer: Ja				Gesetzgeb		ECE			
Device Konfiguration :				Berechnungs	-	DIESEL			
sevice Konngulation .				Kilometerst		26713			
-	W Golf VI 1.6TL	DI							
55	otraffic			Auftragsnu					
Hersteller:				Motorcode					
Fahrzeugmodell: G	olf VI			Hubraum [o	:m³]:				
	nne			Getriebe:		M5			
Fahrgestellnummer:				Reifengröße	9:				
Rollendaten		alte Rolle	enlast			Straßenlast			
Schwungmasse [kg]:15	590	F0 [N]:		60,99		F0 [N]:		115	
Radstand [mm]: 0		F1 [N/(km/	h)]:	0,0517		F1 [N/(km/h)]:		0,37	
Coastdown [s]:		F2 [N/(km/		0,03124		F2 [N/(km/h)2]:		0,031	
Kraftstoffdaten S	TA D-Referenz	MK1						-	
Kraftstoffart:		Heizwert [E		18460.00		C-Gehalt:		Dichte[kg/l]:	0.819
Umgebungsdaten	Einhei	t Phase 1	Phase 2	Phase 3	Phase 4		samt		
Umgebungstemperatur	: [°C] 22.4	22.6				22.527		
Luftdruck:	[mbar] 1021	1021				1021		
Relative Luftfeuchtigke	it: [%] 33.8	33.8				33.8		
Absolute Luftfeuchtigk	eit: [g/kg] 5.6	5.7				5.7		
NOX Korrekturfaktor:	[-] 0.858	0.859				0.858		
verdünnungsfaktor (Be	utel): [-] 32.15	36.22				34.19		
CVS Volumen bei 20°C	: [m³	98.768	98.780			19	97.548		
CVS Volumen bei 0°C:	[m ³] 92.030	92.041			18	34.070		
CVS Temperatur	[°C	34.942	35.088			:	35.015		
PTS-Volumen bei 20°C	[]] 195.4	195.5				391.0		
PTS-Volumen bei 0°C	[] 182.1	182.2				364.3		
Wegstrecke	[km	i] 4.042	4.065				8.107		
Wegstrecke	[mi] 2.512	2.526				5.037		
Phasendauer	[s] 780	780				1560		
Fahrer Verletzung	[s]							
Anzahl Fahrfehler	[-]							
Primärfilter Diff	[mg		0.011						
Sekundärfilter Diff	[mg	0.000	0.000						
Partikelanzahl	[1/cm ³	1 2.68E+01	1.18E+01			1.9	3E+01		
Partikelanzahl	[1	-	1.16E+09				1E+09		
Partikelanzahl vor Verd		-	0.117				0.192		
Verd. Faktor (Partikela		-	99.579				99.579		
Konzentrationen		A 1	L 1	A 2	L 2	A 3 I	. 3	A 4	L 4
THC Tunnel	[ppm C1]		3.09	10.79	3.02			A 4	
CH4	[ppm C1]		2.01	2.27	2.19				
NMHC	[ppm C1]		2.01	2.27	2.15				
20	[ppm]		0.80	3.69	0.77				
NOX	[ppn]		0.80	15.65	0.77				
CO2	[ppiii] [%]		0.03	0.368	0.07				
Beutelmassen/km	Einhei		Phase 2	Phase 3	Phase 4		samt		
HC	[g/km		0.1101				0.1231		
CH4	[g/km		0.0023			(0.0069		
NMHC	[g/km								
NOX	[g/km		0.6214				0.4086		
IC+NOx	[g/km		0.7315				0.5318		
0	[g/km		0.0832).5525		
202	[g/km		146.45				156.55		
Partikel	[g/km		0.0013				0.0009		
Partikelanzahl	[1/km	i] 6.54E+08	2.86E+08			4.6	9E+08		
Verbrauch-Beutel	Einhei	t Phase 1	Phase 2	Phase 3	Phase 4	Ge	samt		
						00			

2. MK1 - Artemis Urban

MPAS Kurzpro	otoko	11							Testzelle
TÜV - Essen			EC	E	2012-03-14 10:10		VORD)	TC#1
Testbegleitdaten		TC#1-201	20314-2		•				
Testdatum: 2	012-03-1	L4 10:10			Fahrkurve:	CADC_urban_neu Default	S_2 0		
Bediener: Ja	ab				Schaltpunkttabelle:				
Fahrer: Ja	ab				Gesetzgebung :	ECE			
Device Konfiguration :					Berechnungsmethode :	DIESEL			
Fahrzeugdaten V		VI 1.6TDI			Kilometerstand:	26724			
	cotraffic	VI 1.01DI			Auftragsnummer:				
Hersteller:	cotraine				Motorcode:	CAYC			
	olf VI				Hubraum [cm ³]:				
Kennzeichen: o	hne				Getriebe:	M5			
Fahrgestellnummer:					Reifengröße:				
Rollendaten			alte Rolle	nlast		Straßenlast			
Schwungmasse [kg]:1	590		F0 [N]:		60,99	F0 [N]:		115	
Radstand [mm]: 0			F1 [N/(km/h		0,0517	F1 [N/(km/h)]:		0,37	
Coastdown [s]:			F2 [N/(km/h	ı)2]:	0,03124	F2 [N/(km/h)2]:		0,031	
Kraftstoffdaten S Kraftstoffart:	FA D-R	teferenz Mi	(1 Heizwert [B	TU/lb1	18460.00	C-Gehalt:	0 000	Dichte[kg/l]:	0.810
Vrantstonrart: Umgebungsdaten		Einheit	Phase 1		Phase 3 Phase		0.859		0.013
Jmgebungstemperatur		[°C]	22.5	1 11036 2		- 6	22.534		
Luftdruck:		[mbar]	1021				1021		
Relative Luftfeuchtigke	eit:	[%]	34.0				34.0		
Absolute Luftfeuchtigk		[g/kg]	5.7				5.7		
NOX Korrekturfaktor:		[-]	0.859				0.859	1	
Verdünnungsfaktor (Be		[-]	29.13				29.13		
CVS Volumen bei 20°C		[m³]	125.739				125.739		
CVS Volumen bei 0°C:		[m³]	117.160				117.160		
CVS Temperatur		[°C]	35.080				35.080		
PTS-Volumen bei 20°C		[1]	580.7				580.7		
PTS-Volumen bei 0°C Wegstrecke		[l]	541.1 4.844				541.1 4.844		
wegstrecke Wegstrecke		[km] [mi]	4.844 3.010				4.844		
Phasendauer		[///] [s]	993				993		
Fahrer Verletzung		[s]							
Anzahl Fahrfehler		[-]							
Primärfilter Diff		[mg]	0.028						
Sekundärfilter Diff		[mg]	0.000						
Partikelanzahl		[1/cm ³]	1.50E+02			1	.50E+02		
Partikelanzahl		[1]	1.89E+10			1	.89E+10	1	
Partikelanzahl vor Vero	1.	[1/cm ³]	1.506				1.506		
Verd. Faktor (Partikela	ınzahl)	[1]	99.579				99.579		
Konzentrationen			A 1	L 1	A2 L2	A 3	L 3	A 4	L 4
THC Tunnel		[ppm C1]:	6.64	3.02					
CH4		[ppm C1] :	2.00	1.94					
NMHC		[ppm C1] :	4.64	1.08					
CO NOX		[ppm] :	3.23 23.44	0.95					
CO2		: [ppm] : [%]	23.44 0.459	0.05 0.041					
		[70] .	0.439	0.041					
Beutelmassen/kn	า	Einheit	Phase 1	Phase 2	Phase 3 Phase	4 G	iesamt		
HC		[g/km]	0.0558				0.0558		
CH4		[g/km]	0.0022				0.0022		
NMHC NOX		[g/km]	0.0538				0.0538		
NOX HC+NOx		[g/km] [g/km]	0.9965 1.0522				0.9965		
		[g/km]	0.0699				0.0699		
CO2		[g/km] [g/km]	199.09				199.09		
Partikel		[g/km]	0.0013				0.0013		
Partikelanzahl		[1/km]	3.89E+09			3	.89E+09		
Vaulaurate Davitat		Eine la a la	Dhass f	Dhage 2	Dhase 2 Dhase				
Verbrauch-Beutel		Einheit	Phase 1	rnase 2	Phase 3 Phase	4 6	iesamt		

8. Appendix 3 – unregulated emissions

Gas phase PAH	1_MK1_UDC_17C	2_MK1_U	DC_17C	1_MK3_UDC	_17C	2_MK3_UDC_1	-7C	1_MK1_U	Jrban	2_MK1_Urban	1_MK3_U	rban	2_MK3_Urba	n Blank / Ze	
	ng/km	ng/	km	ng/km	ı	ng/km		ng/ki	m	ng/km	ng/kn	n	ng/km	ng/km	
Phenanthrene (ng/km)	153	36	62	227		342		274		593	594		614	143	
Anthracene (ng/km)	12	7	5	8.3		74		22		27	27		91	9.4	
3-Methylphenanthrene (ng/km)	15	33		37		44		170		85	85		394	44	
2-Methylphenanthrene (ng/km)	16	4	-	24		27		92		89	89		102	22	
2-Methylanthracene	0.86	N		Nd		3.0		Nd		4.4	4.4		Nd	Nd	
9-Methylphenanthrene	14	4		46		76		79		103	103		117	25	
1-Methylphenanthrene	12	2		19		30		64		68	68		81	17	
9-Methylanthracene	Nd	41		97		93		126		Nd	Nd			497 31	
Fluoranthene	30	3		10		25		25		92	92		44	27	
Pyrene	24	4		26		34		35		94	95		63	36	
I-Methylfluoranthene	Nd	N	-	Nd		Nd		1.4		1.7	1.7		3.8	1.6	
Benzo(b)fluoranthene	Nd	N		Nd		Nd		Nd		Nd	Nd		Nd	Nd	
Benzo(k)fluoranthene	Nd	N		Nd		Nd		Nd		Nd	Nd		Nd	Nd	
Benzo(a)pyrene	Nd	N		Nd		Nd		Nd		Nd Nd	Nd Nd		Nd	Nd	
Dibenzo(a,l)pyrene	Nd	N		Nd Nd		Nd		Nd		Nd Nd	Nd Nd		Nd Nd	Nd	
Dibenzo(a,e)pyrene	Nd	N		Nd		Nd		Nd		Nd	Nd		Nd	Nd	
Dibenzo(a,i)pyrene Dibenzo(a,h)pyrene	Nd	N		Nd		Nd		Nd		Nd	Nd		Nd	Nd	
Dibenzo(d), in pyrene	10		~	110				110	—	110	110		110		
PM phase PAH	1 MK1 UD	C 1 -7C	2 MK1 UDC	1 -7C	1 MK	3 UDC 1 -7C	2 M	K3 UDC	1 -7C	1 MK1 Ur	rban	2 M	<1 Urban	1 MK3 Urba	
ng/km			ng/km		ng/km		_	ng/km		ng/km		r	ig/km	ng/km	
Phenanthrene (ng/km)			34			65		59 34				43	15		
Anthracene	6		3			4		4		3			8	2	
3-Methylphenanthrene (ng	/km) 9		8			19		23		27			20	5	
2-Methylphenanthrene (ng)km 13		10			11		11		36			28	8	
2-Methylanthracene	1		1			1		1		2			1	0	
9-Methylphenanthrene (ng	/km) 9		9			44		50		24			22	6	
1-Methylphenanthrene (ng			7			15		19		24			18	5	
9-Methylanthracene	Nd		Nd			Nd		Nd		Nd			Nd	Nd	
Fluoranthene (ng/km)	29		25			24		15		27			71	21	
Pyrene (ng/km)	34		33			30		23		46			84	29	
1-Methylfluoranthene			1			1		1		7			4	1	
Benzo(b)fluoranthene			1			1	1			2			2	1	
Benzo(k)fluoranthene			0			0		0		1			1	0	
Benzo(a)pyrene	2		1			1		1		1			1	1	
Dibenzo(a,I)pyrene	Dibenzo(a,I)pyrene Nd		Nd			Nd		Nd		Nd			Nd	Nd	
Dibenzo(a,e)pyrene	Dibenzo(a,e)pyrene Nd		Nd			Nd		Nd		Nd			Nd	Nd	
Dibenzo(a,i)pyrene	Nd		Nd			Nd		Nd		Nd			Nd	Nd	
Dibenzo(a,h)pyrene	Nd		Nd			Nd		Nd		Nd			Nd	Nd	
	etane	etene	propane	prop	pene	iso-butane	n-buta	ane	etyne	t-2-but	tene	1-k	outene	iso-buten	
	μg/km	µg/km	µg/km	μg/	′km	μg/km	μg/k	m	µg/km	μg/k	m	μ	g/km	μg/km	
1 MK1 UDC 1 7C	21/17	11680	770	06	66	102	1/1		3/15	254	5		1602	126	

	etane	etene	propane	propene	iso-butane	n-butane	etyne	t-2-butene	1-butene	iso-butene
	μg/km	µg/km	µg/km	μg/km	µg/km	μg/km	μg/km	μg/km	μg/km	μg/km
1_MK1_UDC_17C	3147	11689	770	9666	102	141	345	356	1603	426
2_MK1_UDC_17C	245	8868	229	8214	116	118	242	255	1277	368
1_MK3_UDC_17C	276	10452	252	10452	59	82	310	294	1689	549
2_MK3_UDC_17C	253	10334	271	10795	118	116	267	323	1811	609
1_MK1_Urban	115	1567	107	497	43	65	70	13	49	57
2_MK1_Urban	122	1883	98	745	176	90	125	20	88	74
1_MK3_Urban	222	1847	226	521	141	126	111	14	50	57
2_MK3_Urban	87	2407	115	1357	103	85	113	37	198	154
Blank / Zero	64	77	62	70	81	51	15	0	5	30
	c-2-butene	iso-pentane	n-pentane	1,3-butadiene	propyne	t-2-pentene	1-pentene	2-metylpentane	3-metylpentane	n-hexane
	μg/km	µg/km	µg/km	μg/km	µg/km	μg/km	μg/km	μg/km	μg/km	μg/km
1_MK1_UDC_17C	275	312	303	286	58	255	801	21	23	230
2_MK1_UDC_17C	200	296	386	238	36	214	617	19	24	160
1_MK3_UDC_17C	236	194	341	337	59	255	910	25	35	197
2_MK3_UDC_17C	227	491	506	522	62	271	973	32	46	242
1_MK1_Urban	8	187	366	11	0	13	28	14	16	97
2_MK1_Urban	14	227	211	13	0	21	54	13	16	75
1_MK3_Urban	9	219	316	9	0	13	26	31	37	66
2_MK3_Urban	25	210	234	25	0	35	131	28	34	99
Blank / Zero	0	193	424	10	0	0	5	19	23	129
	bensene	isooctane	n-heptane	toluene	n-octane	etylbensene	m+p-xylene	o-xylene	n-nonane	1,3,5-TMB
	μg/km	µg/km	µg/km	μg/km	µg/km	μg/km	µg/km	μg/km	μg/km	μg/km
1_MK1_UDC_17C	4271	10	49	992	59	211	494	331	359	357
2_MK1_UDC_17C	2505	13	46	748	44	153	388	255	187	316
1_MK3_UDC_17C	2954	10	20	1238	36	225	626	300	325	451
2_MK3_UDC_17C	2985	7	22	1294	32	243	626	304	303	268
1_MK1_Urban	715	32	21	106	47	65	264	152	248	848
2_MK1_Urban	779	11	42	128	59	59	307	145	331	883
1_MK3_Urban	668	10	19	130	42	50	258	87	282	851
2_MK3_Urban	858	9	30	205	55	78	307	132	494	537
Blank / Zero	55	8	3	258	5	18	67	15	8	58

9. Appendix 4 – photos from the tests in Essen

Above, CVS Dilution tunnel is showed

Felix Köhler (TUV NORD) and Peter Ahlvik (Ecotraffic) discussing un-regulated emissions.

Above, pump and flow meter for sampling PAH-sampling.

Above, Filter holder for solid phase PAH and for gas phase PAH (blue). Up to left is the tube for aldheyde samping probes showed.

Above, Filter after two UDC. The filter is almost clean.

